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Covariant interactions in lightcone dynamics 
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Department of Mathematics, University of Nottingham, Nottingham NG7 ZRD, UK 

Received 20 November 1992, in final form 5 Aut3 1993 

Abstract. We present a classical direct-interaction theory in which the panicle variables are 
considered over an observer's past lightcone instead of Ihe usual consrant-time hyperplanes. 
Because a past lightcone is Loren=-invariant we avoid the usual problems of the simultaneity 
of the interaction for differently boosted observers. %e theory is cpvariant in the sellse that 
we show a two-particle realimion of the P o i n d  group with interaction. We calculate the 
forces due to the interaction and find tensor force equations of type @ = F . U .  For a Coulomb 
distance potential, the resulting force t e w r  can be compared directly with Ihe Maxwell tensor 
as a special case. 

1. Introduction 

1.1. Covariant interaction theories 

The special theoly of relativity requires physical laws to be invariant under transformations 
from one inertial coordinate system to another. In the Hamiltonian formalism this 
implies that the Poisson bracket (?E) relations between variables are invariant. The ten 
fundamental generators j A P ,  p" determine how variables change under the corresponding 
coordinate transformation. By considering the commutation relations of the infinitessimal 
transformations we obtain the PB relations characteristic of the Poincare group P: 

( j" ,  j " P ]  = ,,U j&w + ,,&U jAP - ,,AY j&P - ,,PP j x u  (l.la) 
(I.lb) 

W .  P"1 = o .  ( 1 . k )  
( j * P ,  p " )  = ,,""pi - ,,AYp" 

Single-particle realizations of P are ten generators, constructed from the particle position 
and conjugate momentum, which satisfy (1.1). A many-particle realization of P-with no 
interaction--can be obtained by simply summing the individual particle generators. If we 
can introduce extra 'potential' terms into the many-particle generatowthese still satisfying 
(1.1 )-then we have a covariant interaction theory (here we are. using the term covariance 
in the strict sense as expounded by Dirac [l] and Foldy [2], among others). 

However, covariant interaction theories in the usual spacetime coordinates face the 
difficulty that differently boosted observers will measure the variables on different constant- 
time hyperplanes. Conservation of momentum on any hyperplane (and other plausible 
assumptions) lead to the well-known 'no interaction' theorem of Cume et a1 [3], severely 
restricting any covariant interaction theory in the sense outlined above. For a lucid 
discussion of this theorem see, p 168-72 of Mann's book [4]. Bakamjian and Thomas 
[5] avoided the restrictions of the 'no-interaction' theorem by giving up the so-called 
'world line conditions' (whereby differently boosted observers should calculate the same 
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world lines of particles). Since this pioneering paper, there has been a considerable 
literature on the subject-with no agreed solution even for two particles. All attempts 
at constructing hyperplane interactions-with the implied simultaneity of interaction-seem 
hard to reconcile with electromagnetic theory, in which the force acting on one particle is 
calculated from the retarded variables of the other particle(s). 

1.2. A review of the lightcone generators 

Dirac [ 11 pointed out that the usual ‘instant’ form of Hamiltonian dynamics whereby particle 
variables are evaluated over the space-like hyperplanes r = t l ,  t = t2 ,  . . . is not the only 
possibility. One of the the altematives he considered was lightcone dynamics (a special 
case of what Dirac called the ‘point’ form of dynamics), whereby the particle variables are 
evaluated on the stack of past lightcones T = Tl, T = Tz, . . . centred on an observer’s 
world line [6] instead of on constant-time hyperplanes. The particle information on the 
past lightcone T = TO is in prinbiple available to the observer at time To. No observer is 
privileged, as by a spacetime translation any one past lightcone can be transformed into any 
other. 

The position variable on the observer’s past light-cone T = constant, i.e. the position 
actually seen by the observer at time T, we call y(T), with IyI y .  The position y 
is the space part of the null 4-vector y1 = (-U. y), where yi serves to parametrize the 
past lightcone with veltex at the origin. Single-free-particle realizations of P in lightcone 
coordinates have been discussed in [1,6,7]. In [7] the Hamiltonian is derived from the 
Lagrangian 

Y L = -m [(I - - . ut12 - W Z ] ’ / ~ .  
Y 

where ut is the apparent velocity ay/aT. Then in terms of the conjugate momentum 
T E aL/aut the Hamiltonian is 

and the other generators are [6,7] 

The conjugate momentum lr genemtes space translations on the past lightcone, and so is 
not equivalent to p which generates space translations in Minkowski 4-space. Defining the 
Poisson bracket as 

(1.3) 

it may then be verified that the generators (1.2) satisfy all the PB relations (1.1). so that 
there is a conserved energy-momentum ph(y, lr) covariant under Lorentz transformations. 
The past lightcone is brentz-invariant, as physically two differently boosted observers 
momentarily coinciding will see the same set of events, although assigning these events 
different positions y. From (1.2) and (1.3) it follows that 

( j” ,  y”] = f”y - $VY’ (1.4) 
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as required for y” (-y,y) to behave as a 4-vector. Any other vector satisfying the 
relation equivalent to (1.4) we define to be a~Cvector, i.e. to be covariant under Lorentz 
transformations. 

The p” generate a shift of the lightcone vertex through spacetime, i.e. the observer 
associated with the lightcone vertex moved by Sa, will see a change in position Sy’ = 
( y L  , pw] Sa,. The PE relationship between y and p is 

as may be directly verified from (1.2) and (1.3). It is remarkable that the basic Poisson- 
bracket relationship between the lightcone position and momentum has covariant form, even 
though the Poisson bracket formalism is by nature noncovariant. By contrast in the usual 
Hamiltonian procedure the zero component of position is a parameter or zero. With the aid 
of (1.5) the change in yh due to the infinitessimal spacetime translation Sa, is then 

(1.6) 

Consider a purely spatial translation Sa’ = (0, Sa), then from (1.6) the change in y is 

y.Sa y.Sa 
Y.P 

ay = -Sa - p  (-) = -sa + p  (ypo + y. p )  (1.7) 

so that as well as the expected -Sa term there is an extra convection term in the direction 
of p ,  due to the fact that in general a space-translated observer will not see the particle at 
the same point on its world line. Instead of expressing the generators (1.2) in terms of y, T, 
they may be expressed simply in terms of y, p as: 

j M  = (y A p)’” & YAPp’  - y’p’ p’ = p” . (1.8) 

2. Particle interactions considered on an observer’s past lightcone 

Dirac’s main interest in considering altemative forms of Hamiltonian dynamics 111 was 
the possibility of introducing covariant interactions as discussed in section 1.1. We will 
construct a two-particle realization of P with interaction, the dynamical variables being 
evaluated on past lightcones T = constant. While following in the footsteps of Duac and 
Thomas 191. we believe that the specific interactions considered below are new. We procede 
as follows: 

(1) From the single-free-particle generators j h @ ,  p” we can construct the trivial many- 
particle generators J = E, j j ,  P = Xi pi. 

(2) We construct a relativedistance 4-vector (4; - q:). the norm of which is a Lorentz 
scalar (section 3). 

(3) Potential terms (functions of the distance scalar) are inserted into the translation 
generators while these new generators with interaction terms still satisfy (1.1). Physically the 
presence of interaction terms in the translation generators means that the energy-momentum 
of the particles alone is not conserved in the interaction region, as some of the system’s 
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Figure 1. The panicles a and b will be seen by translafed 
o k m e n  atdiRerentpints an their world lines. The to@ energy- 
momentum is the same for any inerlid obsemer. 

momentum is carried by the interaction, which is known to be the case for electromagnetic 
interactions (see e.g. Rosser 181 pages 298-9). 

Consider the world lines of two interacting particles a and b as in figure 1. An observer 
at 0 sees the particles at positions A and B ,  with momenta p(A), p(B). Another observer 
at 0’ sees the particles-at new positions A’ and E’ with momenta p(A’) and p(E’). The 
momentum carried by the interaction is p(1nt) for 0 and p(1nr’) for 0‘. Conservation of 
momentum now requires that 

P ( A )  + POnt) = p(A3 + P(B’) + P@& (2.1) 

even though all three quantities are not seperately conserved. Note that the interaction 
momentum p(1nt) changes even for space-translated observers, as in general they see the 
particles at different points on their world lines and so the interparticle distance will also be 
different. Interactions between particles on an observer’s past lightcone cannot be described 
by the Hamiltonian formalism in the usual Minowski coordinates, as the events A and E ,  
etc. in figure 1 would then be at different times. 

(4) The forces on a particle due to the interaction are calculated by the usual procedure, 
i.e. by taking the Poisson bracket (m) of the individual particle momentum with the 
Hamiltonian (section 4). 

(5) We compare the forces predicted for the specific case of a Coulomb potential 
(section 5). 

We will want to compare our theory with standard electromagnetics by seeing if the 
predicted forces on the particles are the same. In general a straightforward comparison 
is impossible because standard electromagnetic theory derives the forces on one particle 
from information on its private past lightcone (not an observer’s past lightcone). But the 
observer can move to coincide with one of the particles, i.e. to 0” in figure 1. Then we 
can directly compare the forces on particle a predicted by our theory with the standard 
theory. We will find that for an observer coinciding with a test particle (of negligible mass 
so there will be no recoil effects) then the force tensor (4.10) on the test particle is exactly 
as predicted by electromagnetic theory. We will thus say our theory is consistent with the 
usual theory for two particles, even though in general the inter-particle forces are calculated 
using different information. There are problems in extending the theory to more than two 
particles, as discussed in appendii 2. Throughout the following discussion we rely on P” as 
having the dual role of generating spacetime translations as well as representing conserved 
energy-momentum. 
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3. The relative position 4-vector (qi - a). 
3.1. The projected position q; 

As the position vector on the past lightcone y is part of a null 4-vector, it is unsuitable for 
constructing a distance between two particles. So we will construct the following ‘projected 
position’ q; of the particle i ,  requiring that 

(1) it is a 4-vector. so that its norm will be a Lorentz-invariant distance from the origin, 
and 

(2) in the non-relativistic limit the space components of this 4-vector reduce to yi and 
the time component becomes zero. 
If (1) and (2) are satisfied then in the non-relativistic limit the norm of q: is just the usual 
distance. The q; satisfying requirements (1) and (2) is constructed according to the follow- 
ing prescription (see figure 2): 

project from the particie’s (retarded) position y: along the particle’s 
(retarded) momentum p ;  until orthogonal to the system’s momentum 
PA (3.1) 

...._.___ ,‘ ,,‘. .... )... 

..’ 

*T 

0 

Figure 2. At time 7 = 0 a panicle is Seen at position 9 = ( -y ,  U). 
The 4-venor qA is where the tangent vector p A  at yA meets the 
hyperplane oahogonal to the system momentum P’. 

It follows that 

where P A  = Ci p: is the system’s momentum. Note that y i .  pi and P are all evaluated 
at retarded time T. The projected position q,?(T) is a 4-vector (Lorentz-covariant) by 
construction, being a function of the 4-vectors y ; (T) ,  p ; ( T )  and P ( T ) ,  and represents the 
particle’s position on the system’s hyperplane according to the latest information available 
to the observer at time T, i.e. the position it would be in if its momentum remained constant. 
How q; transforms under translations is considered in appendix 1. The orthogonality 
property is easily verified: 

In the non-relativistic limit when IPI < Po,  Ipil << pp. then from (3.2) we have 

(3.4) 

so that the q satisfy condition (2) above. 
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32. Poisson bracket identifies involving the qi 

In particular we derive (3.9) which enables us to introduce potential terms in the next 
section. In the many-particle case, the definition of the Poisson bracket becomes 

(3.5) 

(3.6) 

Note that since only q,? contains yi components, we have (q? , p,!) = 0 for i # j .  Hence, 
we can obtain from (3.6) 

(9*, P”} = (qi” , pi”} = -vA” + - p: p’. (3.7) 

From (3.7) follows the PB between the relative position q; - qj and the system momentum 
P: 

Pi ’ P 

Pi . P 
(3.8) 

so that only in the system rest frame is (ql-q;) invariant under space translations generated 
by P. However we can derive from (3.8) 

(3.9) 

This important relationship enables us to introduce potential terms V(qi - qj) in the next 
section. 

Proof. 

(3.10) 
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From (3.7) we can calculate the rate of change of the free particle qi position vector, 
where we calculate the rate of change of any variable a according to the usual prescription 
do  aa - = - + { a ,  P o ] ,  recalling that T labels the observer’s stack of lightcones: dT aT 

where we have introduced the frame-dependant velocities 

(3.12) 

(3.13) 

which reduce to the usual velocity (1, p i / p ! )  in the system’s rest frame. We note in passing 
that (qi A p i )  = (yi A pi), which enables the Lorentz generators to be wriuen as 

JAc E c ( y j  A pi)A” = c(qi A pi)A’. (3.14) 
i 

The q; of (3.3) was considered by Thomas [9] in the form which is equivalent to our 
definition when jy is the zero-spin Lorentz generator (2.5). 

The analysis above leaves open the question of how the system is defined-an essential 
point, in view of the fact that qf depend on the momenta of all particles in the system, 
however far apart In the next section, we first consider an isolated system of two particles, 
sothat P = p i + p j  a n d q i = q i C Y i , P i . P ) = q i ( Y i , P i , P j ) .  

4. The two-body theory with interaction 

4.1. Introduction of potential terms 

The free-particle system generators for two particles i and j are simply the sum of the 
individual particle generators, i.e. JAfi = jy + j,? and P A  = pf + pi”. so that the 
Poincad group algebra (1.1) is trivially satisfied. We now use (3.9) to introduce into the 
4-momentum generators P” potential terms V@) ,  where qA is the relative position vector 
(4; - 4;) discussed in the last section. Note that as q is orthogonal to the time-like vector 
P then ij is space-like or null, so we can define the ‘distance’ 1qJ (-q . @)”’ ensuring 
a positivedefinite quantity under the square root. The scalar 1qJ is manifestly Lorentz- 
invariant, i.e. { JA’ , Lq]} = 0, but is not invariant under translations (except in the system 
rest frame--see 3.8). From (3.4) we see that in the non-relativistic limit 1qJ becomes simply 
the usual lg; - gjl. We now define the ‘interaction’ generators 

P” P’ 
P.’ = - (lPl+ V(LSJ)) = P’ + - V(LlJ)  

In[-- IPI IPI (4.1) 

then due to (3.9) the identity [ P & ,  PcI] = 0 still holds. We now have a new set of two- 
particle generators-with interaction-while still obeying the PB relations of the Po incd  
group algebra, i.e. 

(4.2) ( J A P ,  J W )  = ,,AP JW + ,,@U J ~ P  - ,,iv JFP - ,,WP J A U  

{.IA’, PA]  = q’”P;[ - qAv Pg 
IPk1 I PII) = 0 

(4.3) 
(4.4) 
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with the P i t  defined as in (4.1). The Hamiltonian 1.1 is now 

where y = j$ is the usual ‘mass increase’ factor due to the centre of mass motion. The rest 
mass is now (lPl+ V)-V will, of course, be negative for bound states-and the fact that 
the Test mass in (4.5) is multiplied by y implies that indeed the two particles are behaving 
as one system. 

4.2. The equation of motion with the potential term V 

We calculate the force on the particles resulting from the distance-type potential term 
V(LGj). We derive the change in momentum of the ith particle using the interaction 
Hamiltonian (4.5): 

Pf = - { P i t ,  P P I =  -y{V(LriJ) 9 ~ $ 1  = -y V’(LqJ) IlriJ. $1. (4.6) 

To derive [LGl , pf] we use (3.6): 

(4.7) 

Inserting the result (4.7) into (4.6) yields 

recalling the uA ‘velocity’ vectors defined by (3.13). We interpret (4.8) as implying a force 
tensor 

For the case of a Coulomb potential V = e2/LqJ, (4.9) becomes 

(4.9) 

(4.10) 

In the next section we discuss whether the FA\” above correponds to the usual Maxwell 
tensor produced by a charged particle. 
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5. The force tensor resulting from a Coulomh potential V = ez/lcjj 

As discussed at the end of section 2 the usual electromagnetic theory of interacting particles 
is a historical theory in the sense that the field at one particle i is calculated from the other 
particle variables at previous times on i ’ s  individual past lightcone. To calculate forces on 
both particles, information from two past lightcones is needed etc. By contrast, the theory 
above deduces all forces from the information on one (the observer’s) past lightcone only. 
We can easily compare the two theories only when they are using the same information to 
predict a force, which only happens when the observer coincides with one of the particles; 
then the force on that particle is predicted by both theories using the same information. A 
complete theory should also take into account that interacting particles undergo acceleration, 
and accelerating particles always radiate according to classical theory. However, if the 
particle j is an ultra-massive charge, then effectively its momentum is constant and we can 
neglect the acceleration part of its electromagnetic field We will see that the tensor field 
FA@ produced by an ultra-massive charge on a test charge i at the origin is exactly the 
Maxwell field as predicted by the standard electromagnetic theory. 

5.1. Derivation of the the force acting on atest  par2cle i at the origin due to particle j .  

Note that 

p; >> pp P “ P j .  (5.1) 

q:=o * q - -q j  

As particle i is at the origin, 
(5.2) -1 - A 

and using (5.2) with the definition (3.2) then 

(5.3) 

recalling that yj is the radial distance of the particle j on the observer’s past lightcone, 
and where p: (3 .pi )  is the radial momentum. Now substituting (5.1). (5.2). (5.3) into 

(4.10). we have 
Y j  

which agrees with the usual ‘velocity’ field part of the Maxwell tensor produced by particle j 
according to the usual theory-see for example Jackson’s 2nd edition [lo] p 567. However, 
when comparing our theory with the usual electrodynamics, it must be remembered that 
the force on a particle is calculated from (4.8) with respect to its frame-dependant velocity 
uh p;Po / / (p i  . P), which depends on the centre of mass momentum P and only reduces 
to the usual velocity ( l , p i / p ; )  in the system rest frame. 

If both particles have mass, then the force tensor will not have the simple form 
(5.4). This greater complication is reflected in the usual theory. since then both particles 
undergo acceleration, which means that there will be extra ‘acceleration’ components in the 
electromagnetic field produced by particle j. 
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6. Conclusion 

We have shown that in the two-particle case the potential V = eZ/lqJ introduced into 
the Poincar6 generators effectively prcduces a tensor force field on the other particle. This 
force tensor on a test (massless) particle coinciding with the observer is exactly the Maxwell 
tensor predicted by the usual theory. We now resort to the covariance of our theory, and 
state that if the force law (4.8) with (4.10) is correct for one particular observer, then it must 
hold for any observer regardless of its location. Note that the Maxwell theory implies that 
the force on a particular particle depends on the other particle variables on that particle’s 
individual past lightcone, not any observer’s past lightcone as in our theory. So in general, 
the two theories calculate the force on a particle from different information. 

We need to point out that there are problems in extending the interaction theory of this 
paper to more than two particles, as it does not satisfy the cluster decomposition property 
(discussed in appendix 2). However it is also known that the usual theory has problems 
in predicting the simplest two-p!uticle interactions, for example the case of two particles 
of equal mass approaching head-on. The computations are difficult, as the differential 
equations involve both present and retarded times, and must be solved numerically. This 
has been done [Il l ,  and surprisingly the particle energies were found to increase during 
interaction. This result was initially attributed to not including the radiation reaction terms 
[ 1 I], but when these were later included energy conservation was still violated and there 
were run-away solutions [ 121. (For a detailed recent discussion of these and other problems 
see pp 144-5 and pp 196-203 of [I31 and references therein). In the direct interaction 
theory above, the energy-momentum conservation at large separations is trivially satisfied. 
Unfortunately, testing any interaction theory by direct experimental observation of particle 
trajectories is impracticable. 

We expect the interaction theory presented here to be particularly applicable to bound 
states, noting that V(lqJ)  is unspecified. Quantization U] may be formally carried out by 
repacing all PBs with commutators divided by i; we leave this for future consideration. 

Appendix 1. How the position q: of a free particle transform under translations 

Consider a spacetime translation a,; then qA + exp(am Pa) qA where we use the notation of 
Sudarshan and Mukunda [14]: exp(&, qA qA + [A, qA] + ;[A, { A ,  qA] 1 +. . .. Using 
(3.7) we obtain 

N 

(Al.1) 

In addition to the expected displacement aA, there is an another projection tam proportional 
to the particle momentum, i.e. qi transforms to a point on a straight line in the direction 
of p i .  From this we can infer that the world line qr of a particle of constant momentum is 
preserved under translations. This interesting fact is mentioned in the work by Bacry on a 
similar position generator-see footnote 13 in /15]. 

Appendix 2. Extension to three or more particles 

We can set up N particle-generator as follows. For the free particle case, we find from 
section 3 
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where the pi 4-vectors are defined by (3.3) as functions of y i ,  p i  and P .  To introduce the 
pair interactions we label the interparticle distance 4-vectors by q; j  = 9; - qj etc. The 
relationship (3.9), which is {G$, P’/IP I) = 0, holds for any i ,  j. This means that we can 
introduce the following set of generators (cf (4.1)) with 

(A2.2) 

If V is a scalar, the pB relations of the Po incd  group (4.2)-(4.4) still hold. Specifically, 
for electromagnetic-type interactions we have 

(A2.3) 

where e;, ej are the particle charges. 
To compare the many-body theory above with the theory of electromagnetic interactions, 

we note the following situation. Consider just three particles with particles i ,  j close together 
and k far away. Then particle k has no direct influence on the other two because l /Lq;kl ,  
I / L q j k l  N 0. But the interaction distance LqijJ-through which the forces of i, j acting 
on each other are calculateddoes depend on the system’s momentum which includes the 
momentum of particle k. In this sense the interaction is not separable however far away the 
third particle is. 
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